

Disclaimer: The views expressed in this document are those of the author, and do not necessarily reflect the views and policies of the Asian Development Bank (ADB), its Board of Directors, or the governments they represent. ADB does not guarantee the accuracy of the data included in this document, and accept no responsibility for any consequence of their use. By making any designation or reference to a particular territory or geographical area, or by using the term "country" in this document, ADB does not intend to make any judgments as to the legal or other status of any territory or area.

Wetland Mitigation Banking: Approaches to Credit Determination

Palmer Hough U.S. Environmental Protection Agency November 2016

What is Wetland Mitigation Banking?

Regulatory-driven environmental market

Permit is required for certain impacts to wetlands and other waters

■ To obtain a permit impacts must be:

- Avoided
- Minimized
- Compensated <u>offset</u> unavoidable wetland losses (debits) by generating credits, helps ensure <u>"no net loss"</u> of wetlands
- Wetland banks generate credits for sale to permit applicants through wetland:
 - Restoration (*preferred*), establishment, enhancement, preservation

Clear and Effective Standards

Describe requirements for identifying, planning, implementing, monitoring, protecting and managing compensation projects, including <u>determining</u> credits

 Balance need for national consistency with need for regional flexibility

Enabling Banking to Function Across Multiple Regions and States

Credit Determination Challenges

Challenge – developing credit allocation procedures that are:

- Science-based
- Principled
- Consistent
- Predictable
- Relatively rapid
- Challenge developing national regulations that allow adequate level of flexibility to address:
 - The enormous ecological variety of wetlands across the U.S. and
 - Differences among states/districts in the level of investment they have made in development of wetland monitoring and assessment tools

Challenge – whatever method is used to determine credits at mitigation banks is also used to determine debits at impact sites

Credit Determination

- Regulations define a credit broadly as:
 - A unit of measure (e.g. a <u>functional</u> or <u>areal</u> measure or other suitable metric) representing the <u>accrual or attainment of aquatic</u> <u>functions</u> at a compensatory mitigation site. Measure of aquatic functions is based on the resources restored, established, enhanced or preserved.
- Areal measures (area-based ratios) simple approach, less resource intensive, but more coarse

Functional measures – more sophisticated approach, more resource intensive, but more precise (*preferred*)

Examples: Credit Determination

- Areal measures (Areabased Ratios)
 - Simple end of spectrum
 - Virginia
 - Blackjack Mitigation Bank
- Functional measures
 - Sophisticated end of spectrum
 - Florida
 - Boarshead Ranch Mitigation Bank

Virginia Example: Areal Measures (Area-based Ratios)

Virginia: Blackjack Mitigation Bank

Type of Action	Mitigation Credit Assigned
Established (created)/Restored Wetlands	1.00 credit for each acre (1:1)
Preserved Wetlands	0.067 credits for each acre (15:1)
Preserved Upland Forest Buffers	0.067 credits for each acre (15:1)

Type of Action	Acres	Ratio	Credits Produced
Established/Restored Wetlands	55.05	1:1	55.05
Preserved Wetlands	1.42	15:1	0.09
Preserved Upland Forest Buffers	45.00	15:1	3.00
Totals	101.47	-	58.14

1 acre = 0.405 hectares

Areal Measures – Other Examples

Figure 5.3: Example Credit Calculation

Activity	Acres	Crediting	Credit Acres
Restoration of historic wetland area	75	1.0 : 1	75.0
Enhancement of severely degraded areas that still meet wetland definition	17	1.0 : 1	17.0
Enhancement of marginally degraded area that still meets wetland definition	з	0.25 : 1	0.75
Adjacent upland restoration	20	0.25 : 1	5.0
Brush removal and burning in fully functioning wetland	5	0	0
Total	1 20		97.75

St. Paul District

Mitigation Activity	Conversion Rate (Area of Activity: Credit)					
Wetlands						
Re-establishment	1:1 to 2:1					
Creation (Establishment)	1:1 to 2:1					
Rehabilitation of altered processes	2:1 to 3:1					
Enhancement of wetland structure	3:1 to 5:1					
Preservation in combination with re-establishment, creation, rehabilitation, or enhancement of wetlands	5:1 to 10:1					
Preservation alone	Case-by-case					
Uplands						
Upland enhancement	3:1 to 10:1					
Upland preservation	8:1 to 15:1					

TABLE 1 - RECOMMENDED COMPENSATORY MITIGATION RATIOS FOR DIRECT PERMANENT IMPACTS

Mitigation	Restoration ¹	Creation	Enhancement	Preservation
Impacts	(re- establishment)	(establishment)	(rehabilitation)	(protection/ management)
Emergent Wetlands (ac)	2:1	2:1 to 3:1	3:1 to 10:12	15:1
Serub-shrub Wetlands (ac)	2:1	2:1 to 3:1	3:1 to 10:12	15:1
Forested Wetlands (ac)	2:1 to 3:1	3:1 to 4:1	5:1 to 10:12	15:1
Open Water (ac)	1:1	1:1	project specific ³	project specific
Submerged Aquatic Vegetation (ac)	5:1	project specific ⁴	project specific⁵	N/A
Streams ⁶ (lf)	2:17	N/A	3:1 to 5:1°	10:1 to 15:1%
Mudflat (ac)	2:1 to 3:1	2:1 to 3:1	project specific	project specific
<i>Upland</i> ¹⁰ (ac)	<u>≥</u> 10:1 ¹¹	N/A	project specific	15:112

New England District

Washington State

Source: WAC 173-700-313 and 173-700-318

Florida Example: Functional Measures

Florida: Boarshead Ranch Mitigation Bank

- Used Florida Uniform Mitigation Assessment Method (UMAM) to determine credits at bank
 - Designed to assess any type of wetland impact and mitigation
 - Provides standard procedures across State of Florida

Web-based training manual for Chapter 62-345, FAC for Wetlands Permitting

Eliana Bardi, Mark T. Brown, Kelly C. Reiss, Matthew J. Cohen

UMAM: http://sfrc.ufl.edu/ecohydrology/UMAM Training Manual ppt.pdf

Applying UMAM

- Divide site into Assessment Areas (AA)
- Evaluate each AA based on 3 functional measures from 0 to 10 (10=minimally impacted)
 - Location/landscape support
 - Water environment
 - Community structure
- Evaluate both "current condition" and "with-mitigation"
- Delta = with-mitigation current condition
- Adjusted Delta = Delta(Time Lag x Risk)
- Credits = Adjusted Delta x Area

AA 2-002 Wetland Restoration

PART II – Quantification of Assessment Area (impact or mitigation) (See Sections 62-345.500 and .600, F.A.C.)

Florida: Boarshead Ranch Mitigation Bank

UMAM Summary Table (Revised 12/20/15)

AA ID	Acres	Mitigation Activity	CC loc	With loc	CC water	With water	CC comm	With comm	CC sum	With sum	Time Lag	Risk	Delta	RFG	FG
1-002	6.36	Herbaceous Wetland Preservation	7	0	9	7	7 7	7 3	0.70	0.77	1.017	1	0.07	0.065552278	0.42
1-005	3.50	Forested Wetland Preservation		E B	9	5	8 8	5 8	0.80	0.83	1.017	1	0.03	0.032776139	0.12
1-004	223.95	Forested Wetland Preservation	E	1	9 1	9	9 9	9 9	9 0.87	0,90	1.017	1	0.03	0.032776139	7.34
1-004a	9.26	Forested Wetland Preservation (buffer)	E	1	в	9	9 8	9 9	0.87	0.87	0.000	0.00	0.00	0.000000	0.00
1-027	4.97	Forested Wetland Enhancement	8	1	9 3	6	e 7	7 5	0.70	0.80	1.478	1.25	0.10	0.054127199	0.27
1-029	219.3	Forested Wetland Enhancement	8	1	9	8	9 8	B 1	0.80	0.90	1.070	1.25	0.10	0.074794316	16.40
1-029a	15.04	Forested Wetland Enhancement (buffer)	E	6	B	8	9 8	в 9	0.80	0.87	1.070	1.25	0.07	0.049862877	0.75
2-001	11	Herbaceous Wetland Restoration	0		9	0	9 (0 9	0.00	0.90	1.070	1.25	0.90	0.673148841	7.40
2-002	22.4	Herbaceous Wetland Restoration	0)	9	2	9 (5 5	0.00	0.90	1.070	1.25	0.90	0.673148841	15.08
2-003	72.92	Herbaceous Wetland Creation	0	1	9	0	9 (9	9 0.00	0.90	1.070	1.5	0.90	0.560957367	40.91
2-005	66.81	Herbaceous Wetland Enhancement	6	i (9	7	9 (5 5	0.63	0.90	1.070	1.25	0.27	0.199451508	13.33
2-006	4.11	Forested Wetland Enhancement	E	£ .	0	в	9 8	8 (0.80	0.90	1.070	1.25	0.10	0.074794316	0.31
2-043	26.68	Forested Wetland Enhancement	6	i. 1	9	7	9 6	5) (s	0.63	0.90	1.478	1.25	0.27	0.144339197	3.85
2-043a	7.26	Forested Wetland Enhancement (buffer)	6		8	7	9 6	5 5	0.63	0.87	1.478	1.25	0.25	0.126296797	0.92
2-044	2.25	Herbaceous Wetland Enhancement	e	5	9	7	8 9	5 5	0.60	0.75	1.070	1.25	0.13	0.099725754	0.22
2-046	2.64	Forested Wetland Preservation	7	e	0	7	7 3	8 1	0.73	0.80	1.017	1	0.07	0.065552278	0.17
2-047	44.85	Open Water (no credit)	0	1	0 0	0	0 (0 (0.00	0.00	0.000	0.00	0.00	0.000000	0.00
3-001	15.42	Herbaceous Wetland Enhancement	e	5	9	7	9 6	5 1	0.63	0.90	1.070	1.25	0.27	0.199451508	3.08
3-002	31.08	Herbaceous Wetland Restoration		8 I	9	0	9 (5 5	0.00	0.90	1.070	1.25	0.90	0.673148841	20.92
3-003	18.06	Herbaceous Wetland Creation	0	1	9)	0	9. (0 9	0.00	0:90	1.070	1.5	0.90	0.560957367	10 13
3-019	9.83	Herbaceous Wetland Enhancement	6	i 1	в	9	9 6	5 8	0.70	0.85	1.070	1.25	0.13	0.099725754	0.98
3-020	9.09	Open Water (no credit)		E	0	0	0 (0 0	0.00	0.00	0.000	0.00	0.00	0.000000	0.00
4-001	2.44	Herbaceous Wetland Enhancement	1	6	9	6	9 1	3 (0.53	0.90	1.070	1.25	0.37	0.274245824	0.67
4-002	3.47	Herbaceous Wetland Creation	0	5	9	0	9 (2 5	0.00	0.90	1.070	1.5	0.90	0.560957367	1.95
4-025	7.08	Open Water (no credit)	1.0	£	0	0	0 0		0.00	0.00	0.000	0.00	0.00	0.000000	0.00
4-026	1.18	Herbaceous Wetland Enhancement	1	t - 1	9 8	5	5 (5 8	0.60	0.75	1.070	1.25	0.15	0.099725754	0.12
4-027	1.75	Herbaceous Wetland Enhancement	7	r -	9	6	6 6	5 9	0.63	0.90	1.070	1.25	0.17	0.124657199	0.22
4-025	3.03	Herbaceous Wetland Creation		2	9	0	9 (2 5	0.00	0.90	1.070	1.5	0.90	0.560957367	1.70
4-029	1.63	Herbaceous Wetland Enhancement	1	6 1	9	3	9 1	1 9	0.37	0.90	1.070	1.25	0.53	0.398903017	0.65
5-001	4.05	Herbaceous Wetland Enhancement	E	1	9	8	9 3	5 5	0.63	0.90	1.070	1.25	0.27	0.199451508	0.81
5-002	55.04	Forested Wetland Creation	1.0	3	9	0	9 (o s	0.00	0.90	1.478	1.5	0.90	0.405953992	22.34
5-003	18.29	Protested Wetland Preservation		£	9	9	9 9	9 1	9 0.87	0.90	1.017	1	0.03	0.032776139	0.00

Conclusions

- Important to have clear and effective national standards for all aspects of mitigation projects, including credit determination
 - Standards must balance need for national consistency with need for regional flexibility
 - Not a single approach to credit determination that will work nationwide
 - Credit determination approaches are not static, regularly updated/revised
- Successful in creating large wetland banking program, most banks sponsored by private sector
 - Over 2,600 credit transactions at mitigation banks in 2015
 - \$1.3 \$2.2 billion spent annually by permittees on wetland/stream compensation credits, including bank credits

 Next steps – updating inventory of credit/debit determination methodologies nationwide

For more information about wetlands mitigation in the United States:

https://www.epa.gov/cwa-

404/mitigation

ribits.usace.army.mil