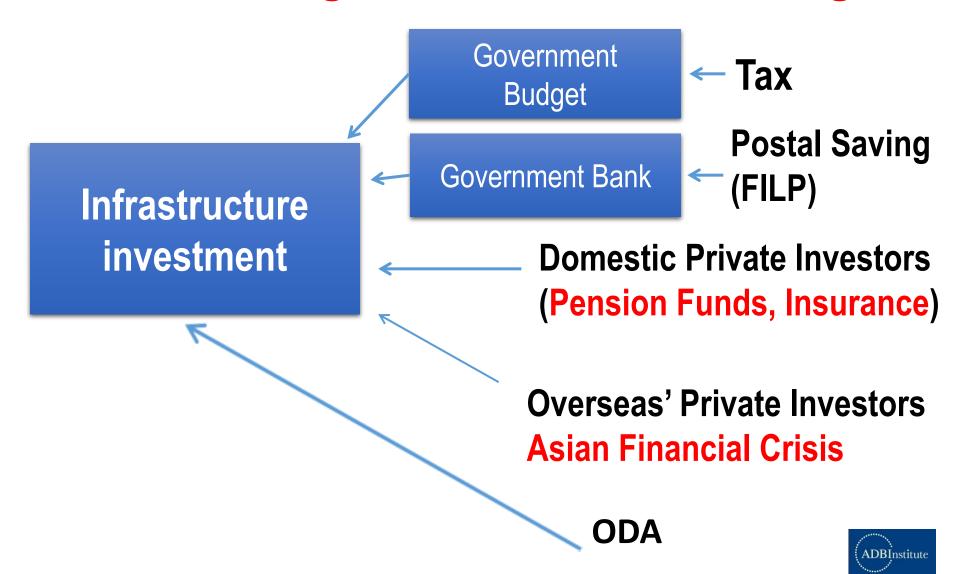
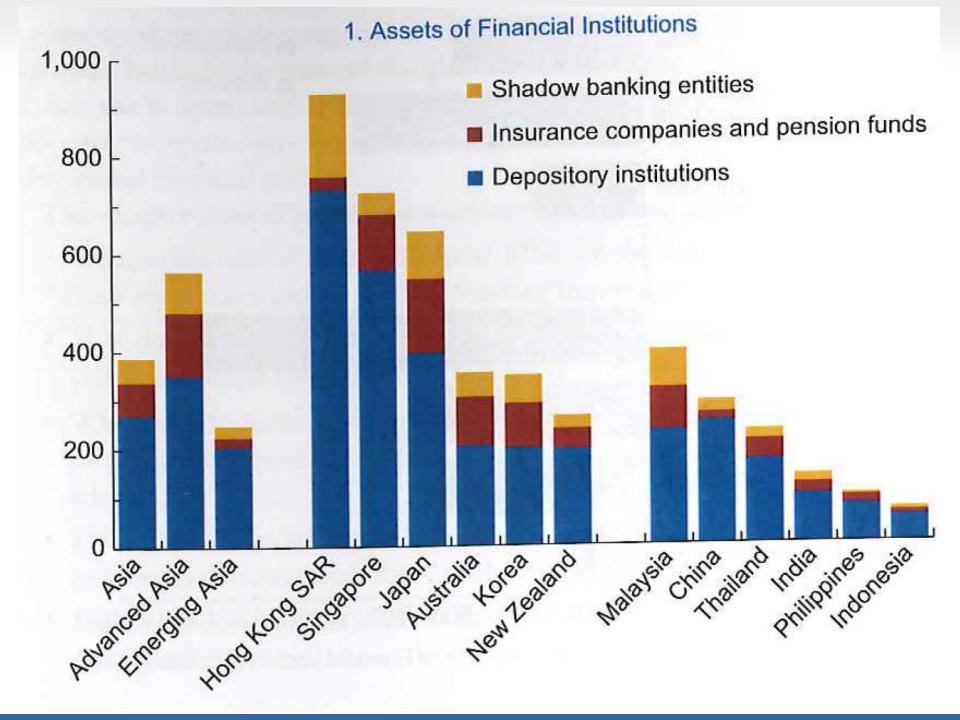
Financing for Infrastructure and The Way to Increase Rate of Return


Disclaimer: The views expressed in this document are those of the author, and do not necessarily reflect the views and policies of the Asian Development Bank (ADB), its Board of Directors, or the governments they represent. ADB does not guarantee the accuracy of the data included in this document, and accept no responsibility for any consequence of their use. By making any designation or reference to a particular territory or geographical area, or by using the term "country" in this document, ADB does not intend to make any judgments as to the legal or other status of any territory or area.

Naoyuki Yoshino Dean, Asian Development Bank Institute (ADBI)

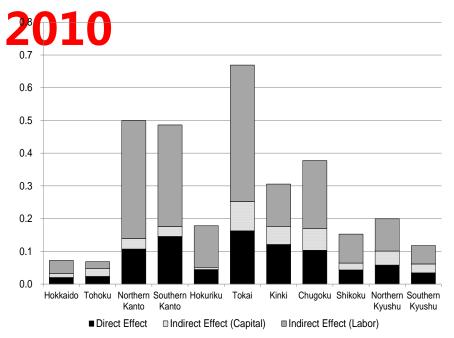
Professor Emeritus Keio University nyoshino@adbi.org

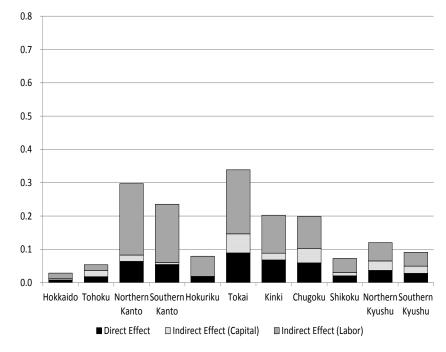
Infrastructure Finance: Use of long term domestic savings


Long term and Patient investors are needed

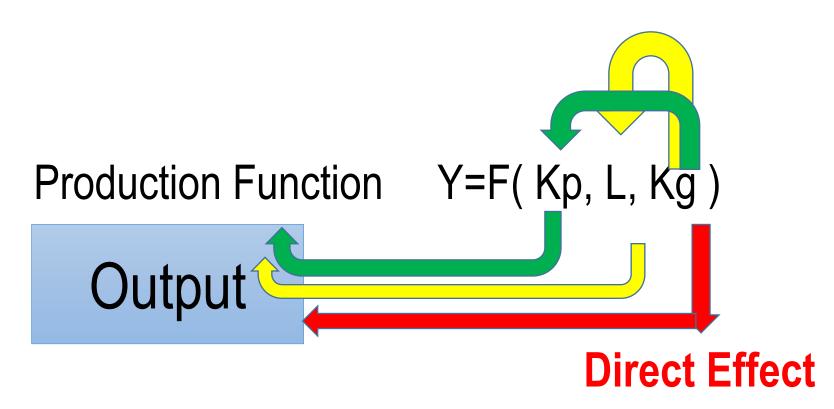
- 1. Bank deposits Bank loans (2-5 years)
- 2. Life insurance (20 years, 30 years)
- 3. Pension funds (20, 30, 40 years)

Long term financing


- 4. Asset Management of long term instruments
- 5. Financial education has to be developed



Regional Disparities of Economic Effects large differences in Spillover effects


1990

Direct Effect and Spill-over Effects

Y= Output, Kp= private capital, L = labor Kg = public capital (infrastructure)

Return the spillover effects to Investors

The production technology of the private sector is represented by the following production function.

$$Y = f(K_p, L, K_G) \tag{1}$$

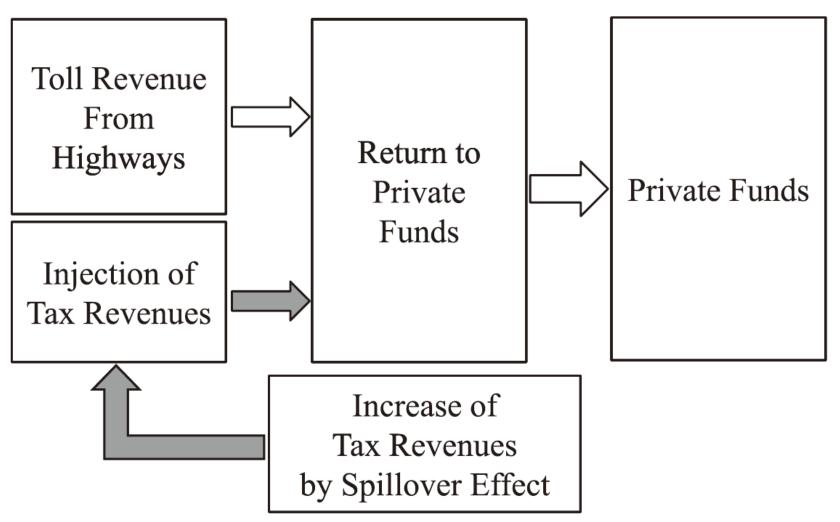
where Y denotes output (in value added) in the private sector. The output is produced by combining private capital stock, K_p , labor input, L, and infrastructure stock, K_G .

In this paper, we assume the translog production function.

In Y =
$$\alpha_0 + \alpha_K \ln K_p + \alpha_L \ln L + \alpha_G \ln K_G$$

+ $\beta_{KK} (1/2) (\ln K_p)^2 + \beta_{KL} \ln K_p \ln L + \beta_{KG} \ln K_p \ln K_G$
+ $\beta_{LL} (1/2) (\ln L)^2 + \beta_{LG} \ln L \ln K_G + \beta_{GG} (1/2) (\ln K_G)^2$ (2)

Assuming the production function represented by equation (1), and that factor prices and infrastructure are given for producers in the private sector, the effect of infrastructure on productivity is expressed as:


$$\frac{dY}{dK_G} = \frac{\partial Y}{\partial K_G} + \frac{\partial Y}{\partial K_P} \frac{\partial K_P}{\partial K_G} + \frac{\partial Y}{\partial L} \frac{\partial L}{\partial K_G}$$
(9)

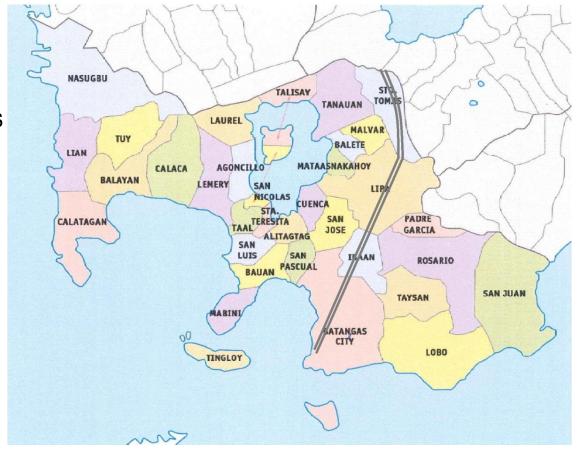
Here, the effect of infrastructure is divided into three parts; the first term on the right hand side of equation (9) represents *direct effect*; the second term is the *indirect effect* on output with respect to the resulting change in the input of private capital and the third term is the *indirect effect* on output with respect to the resulting effect on labor input.

Figure 4
Injection of a fraction of tax revenues gained from spillover effect

2010	Private	Public	Direct	Indirect	Effect	20%	Increment
Manufacturing	Capital	Capital	Effect	Capital	Labor	Returned	(%)
Hokkaido	0.084	0.028	0.008	0.005	0.016	0.004	50.8
Tohoku	0.111	0.054	0.018	0.018	0.018	0.007	40.0
Northern Kanto	0.068	0.297	0.064	0.019	0.215	0.047	73.2
Southern Kanto(TOKYO)	0.052	0.235	0.054	0.006	0.175	0.036	66.5
Hokuriku	0.077	0.079	0.018	0.001	0.061	0.012	69.1
Tokai	0.093	0.339	0.089	0.057	0.192	0.050	55. 9
Kinki	0.056	0.202	0.068	0.020	0.114	0.027	39.5
Chugoku	0.075	0.198	0.059	0.043	0.096	0.028	47.0
Shikoku	0.089	0.073	0.021	0.010	0.042	0.010	50.8
Northern Kyushu	0.093	0.120	0.037	0.028	0.055	0.017	45.5
Southern Kyushu	0.098	0.091	0.028	0.022	0.041	0.013	45.7
							ADBInstit

2010	Private	Public	Direct	Indirect	Effect	20%	Increment
Services Sector	Capital	Capital	Effect	Capital	Labor	Returned	(%)
Hokkaido	0.197	0.122	0.043	0.053	0.027	0.016	37.2
Tohoku	0.222	0.189	0.066	0.107	0.015	0.025	37.0
Northern Kanto	0.235	0.273	0.095	0.124	0.054	0.036	37.5
Southern Kanto(TOKYO)	0.254	0.917	0.315	0.444	0.158	0.120	38.2
Hokuriku	0.220	0.217	0.075	0.118	0.024	0.028	37.8
Tokai	0.203	0.429	0.149	0.176	0.105	0.056	37.8
Kinki	0.202	0.316	0.110	0.131	0.075	0.041	37.7
Chugoku	0.212	0.121	0.044	0.068	0.010	0.016	35.6
Shikoku	0.224	0.193	0.069	0.099	0.026	0.025	36.3
Northern Kyushu	0.213	0.178	0.063	0.087	0.028	0.023	36.3
Southern Kyushu	0.228	0.157	0.057	0.090	0.009	0.020	ADBI

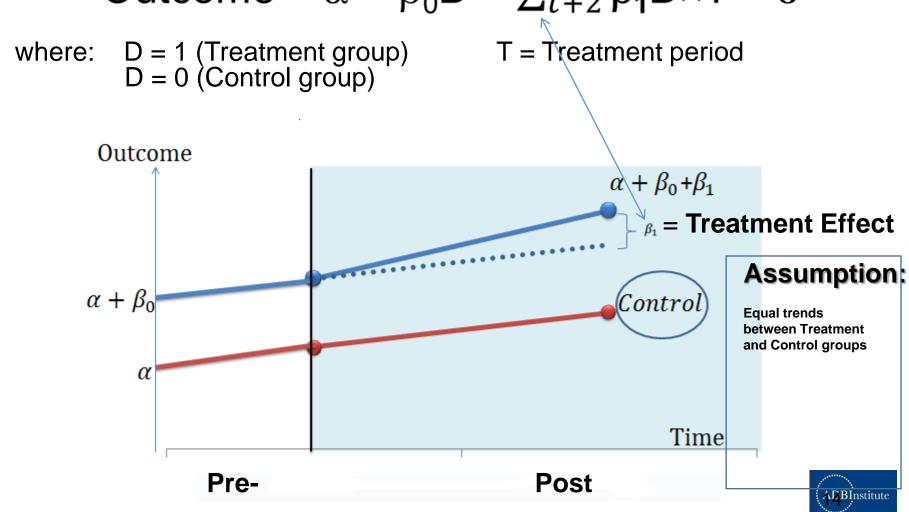
·


Spillover effects → Return to investors

1956-60	1961-65	1966-70	1971-75	1976-80	1981-85
0.696	0.737	0.638	0.508	0.359	0.275
0.453	0.553	0.488	0.418	0.304	0.226
1.071	0.907	0.740	0.580	0.407	0.317
0.3048	0.292	0.2456	0.1996	0.1422	0.1086
43.8	39.6	38.5	39.3	39.6	39.5
	0.696 0.453 1.071 0.3048	0.696 0.737 0.453 0.553 1.071 0.907 0.3048 0.292	0.696 0.737 0.638 0.453 0.553 0.488 1.071 0.907 0.740 0.3048 0.292 0.2456	0.696 0.737 0.638 0.508 0.453 0.553 0.488 0.418 1.071 0.907 0.740 0.580 0.3048 0.292 0.2456 0.1996	0.453 0.553 0.488 0.418 0.304 1.071 0.907 0.740 0.580 0.407 0.3048 0.292 0.2456 0.1996 0.1422

1991-95	1996-00	2001-05	2006-10
0.181	0.135	0.114	0.108
0.162	0.122	0.1	0.1
0.155	0.105	0.09	0.085
0.0634	0.0454	0.038	0.037
35.0	33.6	33.3	34.3
	0.181 0.162 0.155 0.0634	0.1810.1350.1620.1220.1550.1050.06340.0454	0.181 0.135 0.114 0.162 0.122 0.1 0.155 0.105 0.09 0.0634 0.0454 0.038

Case Study: Southern Tagalog Arterial Roa (STAR), Philippines Micro-data


- The Southern Tagalog Arterial Road (STAR) project in Batangas province, Philippines (south of Metro Manila) is a modified Built-Operate-Transfer (BOT) project.
- The 41.9 km STAR tollway was built to improve road linkage between Metro Manila and Batangas City, provide easy access to the Batangas International Port, and thereby accelerate industrial development in Batangas and nearby provinces.

Difference-in-Difference (DiD) Analysis

Outcome =
$$\alpha + \beta_0 D + \sum_{t=2}^{t-4} \beta_1 D \times T + \epsilon$$

Difference-in-Difference Regression: Spillover

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	Property	Property	Business	Business	Regulatory	Regulatory	User	User
	tax	tax	tax	tax	fees	fees	charge	charge
Treatment D	1.55535	0.736	1.067	0.438	1.372	0.924	0.990	0.364
Trodunont B	(1.263)	(0.874)	(1.316)	(1.407)	(1.123)	(1.046)	(1.095)	(1.028)
Treatment D	0.421**	-0.083	1.189***	0.991**	0.248***	-0.019	0.408***	-0.010
× Period _{t+2}	(0.150)	(0.301)	(0.391)	(0.450)	(0.084)	(0.248)	(0.132)	(0.250)
Treatment D	0.447**	0.574***	1.264***	1.502***	0.449**	0.515***	0.317**	0.434**
\times Period _{t+1}	(0.160)	(0.118)	(0.415)	(0.542)	(0.142)	(0.169)	(0.164)	(0.167)
Treatment D	, ,	0.570**	, ,	` ,	,	` ′	,	,
×	0.497***	(0.223)	1.440***	1.641***	0.604**	0.642***	0.350	0.422
Period _{t0}	(0.128)	,	(0.417)	(0.482)	(0.183)	(0.181)	(0.271)	(0.158)
Treatment D	4 20 4**	0.207	0.056**	4 770**	4 240**	0.020*	0.050	0.407
×	1.294**	0.387	2.256**	1.779**	1.318**	0.838*	0.959	0.197
Period _{t-1}	(0.674)	(0.728)	(0.957)	(0.470)	(0.649)	(0.448)	(0.714)	(0.560)
Treatment D	1.163*	0.336	2.226**	1.804**	1.482**	1.044**	0.941	0.247
×	(0.645)	(0.594)	(0.971)	(0.531)	(0.634)	(0.413)	(0.704)	(0.531)
Period _{t-2}	(0.043)	(0.554)	(0.971)	(0.551)	(0.054)	(0.413)	(0.704)	(0.551)
Treatment D	1.702*	0.450	2.785**	2.070***	1.901***	1.238***	1.732***	0.676
×	(0.980)	(0.578)	(1.081)	(0.544)	(0.630)	(0.369)	(0.598)	(0.515)
Period _{t-3}	(0.300)	(0.570)	(1.001)	(0.544)	(0.000)	(0.000)	(0.000)	(0.010)
Treatment D								
×	2.573***	1.100	3.428***	2.560***	2.288***	1.509***	2.030***	0.787
Period _{t-4,}	(0.900)	(0.758)	(0.928)	(0.350)	(0.563)	(0.452)	(0.607)	(0.745)
forward								
Construction		2.283**		1.577		1.207		1.942*
	4.4.00***	(1.172)	4 4 4 0 + + +	(1.196)	40.00***	(0.855)	40.00***	(1.028)
Constant	14.69***	-2.499 (0.030)	14.18***	2.230	13.66***	4.597	13.08***	-1.612 (7.04)
	(0.408)	(8.839)	(0.991)	(9.094)	(0.879)	(6.566)	(0.649)	(7.84)
N R²	80 0.20	73 0.41	79 0.27	73 0.44	80 0.43	73 0.50	77 0.26	73 0.20
	0.29	0.41	0.37	0.44	0.43	0.50	0.26	0.39

Clustered standard errors, corrected for small number of clusters; * Significant at 10%. ** Significant at 5%. *** Significant at 1%.

ADBİnstitute

The Southern Tagalog Arterial Road (STAR Highway), Philippines, Manila Tax Revenues in three cities

Yoshino and Pontines (2015) ADBI Discussion paper 549

表 8 フィリピンの STAR 高速道路の影響のない地域と比較した事業税の増加額

(単位:100万ペソ)

	t_2	t_1	t_0	t ₊₁	t ₊₂	t ₊₃	t ₊₄ 以降
Lipa 市	134.36	173.50	249.70	184.47	191.81	257.35	371.93
Ibaan 市	5.84	7.04	7.97	6.80	5.46	10.05	12.94
Batangas 市	490.90	622.65	652.83	637.89	599.49	742.28	1208.61

(出所) Yoshino and Pontines (2015)より筆 作成

Completion

The Southern Tagalog Arterial Road (STAR Highway), Philippines, Manila Tax Revenues in three cities

Yoshino and Pontines (2015) ADBI Discussion paper 549

表 8 フィリピンの STAR 高速道路の影響のない地域と比較した事業税の増加額

(単位:100万ペソ)

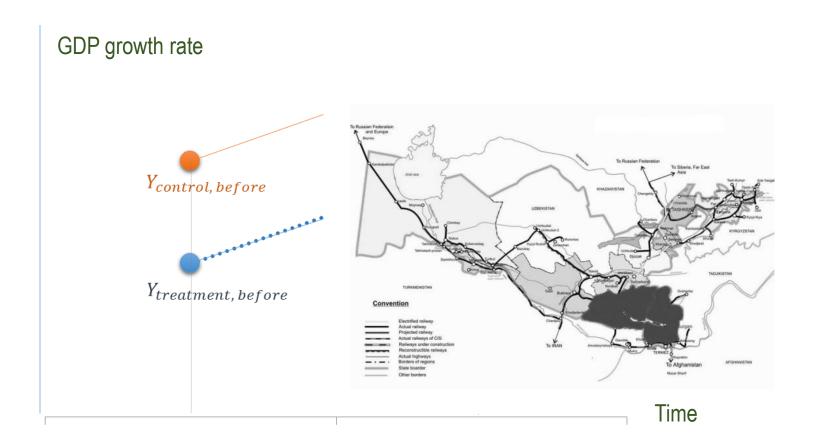
	t_2	t_1	t_0	t ₊₁	t ₊₂	t ₊₃	t ₊₄ 以降
Lipa 市	134.36	173.50	249.70	184.47	191.81	257.35	371.93
Ibaan 市	5.84	7.04	7.97	6.80	5.46	10.05	12.94
Batangas 市	490.90	622.65	652.83	637.89	599.49	742.28	1208.61

(出所) Yoshino and Pontines (2015)より筆字作成

Completion

Cross-border Infrastructure Investment Role of Multilateral Institution Large

Country A City


Country B Spillover effect, Promote SMEs

Spillover effect

→ Increase in Tax revenues

Uzbekistan Railway

Divide regions affected and not affected by railway connection to "Treated group" and "Control group"

Difference-in-difference: regression

incorporating time varying covariates

Control group
$$E[\Delta Y_{0it}|i,t,X_{it}] = \alpha + \gamma_i + \varphi_t + X'_{it}\beta$$

Treated group $E[\Delta Y_{1it}|i,t,X_{it}] = E[Y_{0it}|i,t,X_{it}] + \delta$

•
$$\Delta Y_{it} = \alpha_i + \varphi_t + X'_{it}\beta + \delta(D_{rail} \times D_{post})_{it} + \epsilon_{it}$$

 ΔY_{it} - GDP growth rate

 α_i - sum of autonomous (α) and region specific (γ_i) rate of growth

 φ_t - year specific growth effect

 X_{it} -time varying covariates


 $\left(D_{rail} \times D_{post}\right)_{it}$ -dummy variable indicating that observation belong to treated group after treatment period

 δ - difference in difference coefficient

 ϵ_{it} - error term

GDP

GDP	Term	Connectivity spillover effect	Regional spillover effect	Neighbourng sillover effect
Launching	Short	2.83***[4.48]	0.70[0.45]	1.33[1.14]
Effects	Mid	2.5***[6.88]	0.36[0.29]	1.27[1.46]
	Long	2.06***[3.04]	-0.42[-0.29]	2.29**[2.94]
Anticipated	Short	0.19[0.33]	0.85[1.75]	-0.18[-0.20]
:	Mid	0.31[0.51]	0.64[1.30]	-0.02[-0.03]
:	Long	0.07[0.13]	-0.006[-0.01]	0.50[0.67]
Postponed Effect	ts	1.76*[1.95]	-1.49[-0.72]	2.58*[2.03]
Anticipated	Short	-1.54[-1.66]	1.42[0.78]	-1.32[-0.92]
!	Mid	0.32[0.44]	0.84[1.42]	0.13[0.13]
c	Long	0.11[0.15]	0.10[0.16]	0.87[1.19]
Postponed Effect	ts	-0.14[-0.20]	-1.71[-1.35]	1.05[1.44]

Note: t-values are in parenthesis. t-value measures how many standard errors the coefficient is away from zero.

legend: * p<.1; ** p<.05; *** p<.01

Additional tax revenue, Regional GDP growth and Railway Company Net Income, LCU (bln.)

Period	Coefficie nts	T(20)*ΔY (Tax revenue)	ΔY Affected (Direct + Spillover effects)	Company net income (Revenue - Costs)
Short term (2009-2010)	2.83*** [4.48]	16.0	79.9	315.5
Mid-term (2009-2011)	2.48*** [6.88]	16.3	81.5	411.7
Long-term (2009-2012)	2.06*** [3.04]	14.7	73.5	509.0

Source: Authors' calculations

Japanese Bullet Train

Impact of Kyushu Shinkansen Rail on CORPORATE TAX revenue during 1st PHASE OF OPERATION period

{2004-2010}, mln. JPY (adjusted for CPI, base 1982)

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2
9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3

COMPOSITION OF GROUPS

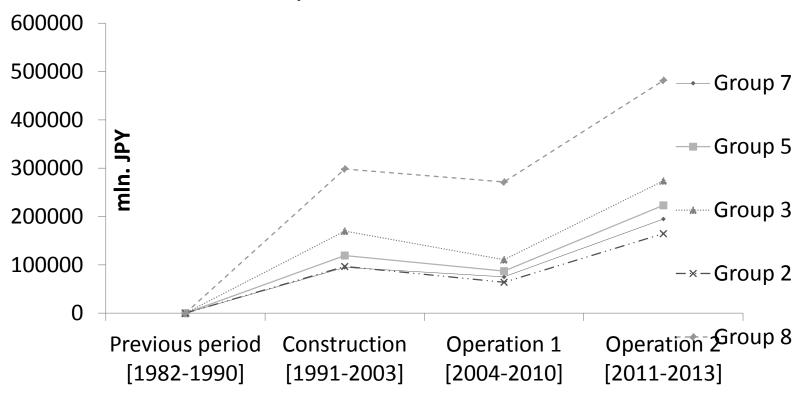
						0.10	0010
Variable Treatment2 Number of tax	Regression 1 -4772.54 [-0.2]	Regression 2	Regression 3	Regression 4	Regression 5	Group2 Kagoshima Kumamoto	Group5 Kagoshima Kumamoto
payers	5.8952514* [1.95]	5.8957045* [1.95]	5.896112* [1.95]	5.8953585* [1.95]	5.8629645* [1.91]	Group3 Kagoshima	Fukuoka Oita Miyazaki
Treatment3		-15947.8 [-0.87]				Kumamoto	, 0
Treatment5			-13250.4 [-1.06]			Fukuoka	
Treatment7				-6883.09 [-0.7]		Group7	GroupCon Kagoshima
TreatmentCon					-28030.8 [-0.65]	Kagoshima	Kumamoto
Constant	-665679	-665418	-665323	-665358	-658553	Kumamoto Fukuoka	Fukuoka Osaka
	[-1.35]	[-1.35]	[-1.35]	[-1.35]	[-1.32]	Oita	Hyogo
N	799	799	799	799	799	Miyazaki	Okayama
R2	0.269215	0.269281	0.269291	0.269241	0.269779	Saga	Hiroshima
<u>F</u>	1.934589	2.106448	2.074548	2.100607	8.497174	Nagasaki	Yamaguchi

Note: Treatment2 = Time Dummy {1991-2003} x Group2. etc. t-values are in parenthesis. Legend: * p<.1; ** p<.05; *** p<.01. Clustering standard errors are used, allowing for heteroscedasticity and arbitrary autocorrelation within a prefecture, but treating the errors as uncorrelated across prefectures

Impact of Kyushu Shinkansen Rail on CORPORATE TAX revenue during 2nd PHASE OF OPERATION period

{2011-2013}, mln. JPY (adjusted for CPI, base 1982)

1	1	1	1	1	1	1	1	1	1	1	1 19	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2
9	9	9	9	9	9	9	9	9	9	9	9 94	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	3	4	5	6	7	8	9	0	1	2	3	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3

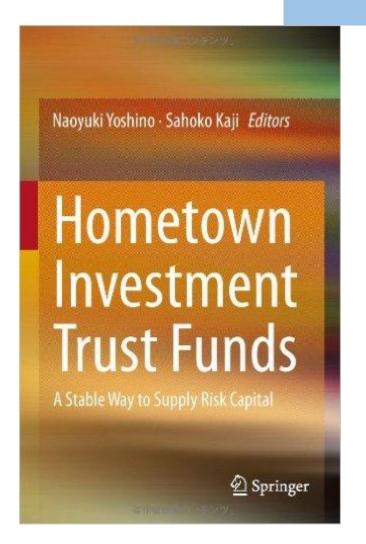

COMPOSITION OF GROUPS

Variable Treatment2	Regression 1 72330.012**	Regression 2	Regression 3	Regression 4	Regression 5	Group2	Group5
Healmentz						Kagoshima	Kagoshima
Number of tax	[2.2]					Kumamoto	Kumamoto Fukuoka
payers	5.5277056***	5.5585431***	5.558603***	5.5706545***	5.9640287***		
pa., 0.0	[3.13]	[3.14]	[3.14]	[3.14]	[3.07]	Group3	Oita
Treatment3	[0.10]	104664.34*	[0.11]	[0.11]	[0.01]	Kagoshima	Miyazaki
		[2]				Kumamoto	
Treatment5		[-]	82729.673**			Fukuoka	
			[2.1]				
Treatment7				80998.365**			GroupCon
				[2.34]		Group7	Kagoshima
TreatmentCon					179632	•	Kumamoto
					[1.58]	Kagoshima	
Constant	-568133.98**	-573747.28**	-574245.87**	-576867.56**	-642138.87**	Kumamoto	Fukuoka
	[-2.07]	[-2.08]	[-2.08]	[-2.09]	[-2.1]	Fukuoka	Osaka
						Oita	Hyogo
N	611	611	611	611	611	Miyazaki	Okayama
R2	0.350653	0.352058	0.352144	0.352874	0.364088	Saga	Hiroshima
<u>F</u>	5.062509	5.486197	5.351791	5.431088	16.55518	Nagasaki	Yamaguchi

Note: Treatment2 = Time Dummy {1991-2003} x Group2. etc. t-values are in parenthesis. Legend: * p<.1; ** p<.05; *** p<.01. Clustering standard errors are used, allowing for heteroscedasticity and arbitrary autocorrelation within a prefecture, but treating the errors as uncorrelated across prefectures

Total tax revenue, mln. JPY

Public-Private Partnership (PPP) **Give incentives to operating entity**


Payoff table for infrastructure operating entity and investors

	Normal Case	Effort Case
Normal Case	(50, r) Operating Investors Entity	(50, αr) Operating Investors Entity
Effort Case	(100, r) Operating Investors Entity	(100, αr) Operating Investors Entity

Possible Solutions Start up businesses, farmers

Hometown Investment Trust Funds

A Stable Way to Supply Risk Capital

Yoshino, Naoyuki; Kaji, Sahoko (Eds.) 2013, IX, 98 p. 41 illus.,20 illus. in color

Available Formats:

ebook Hardcover Springer

Japan, Cambodia Vietnam, Peru

Investment in SMEs and start up businesses

すべてを失い再起を断念しそうになった時の

Agricultural Funds

Beans and Wine

References

Yoshino N. Kaji, S. (2013) *Hometown Investment Trust Funds*, Springer, March 2013

Yoshino, N., Taghizadeh Hesary, F. (2014), 'Analytical Framework on Credit Risks for Financing SMEs in Asia'. <u>Asia-Pacific Development Journal</u>. United Nations Economic and Social Commission for Asia and the Pacific (UN-ESCAP)

Yoshino, N. and Taghizadeh Hesary F. (2015) "Analysis of Credit Ratings from Small and Medium-sized Enterprises: Evidence from Asia", Asian Development Review, Vol.32, No2

Yoshino, N. and Pontines, Victor (2015) "The Highway-Effect on Public Finance: Case of the STAR Highway in the Phillippines", GIE | AAA Special Kick-off Edition, GIE Network publishing.

- Nakahigashi, M and Yoshino, N. (2016) "Changes in Economic Effect of Infrastructure and Financing Method", <u>Public Policy Review</u>, Vol.12, No.1.
- Yoshino, Naoyuki (2010) "Financing Transport Infrastructure Investment", OECD (ed.), Southeast Asian Economic Outlook 2010, OECD Publishing.
- Yoshino, Naoyuki (2012) "Global Imbalances and the Development of Capital Flows among Asian Countries", OECD Journal: Financial Market Trends, Vol. 2012/1
- Yoshino, Naoyuki and Masaki Nakahigashi (2004) "The Role of Infrastructure in Economic Development", ICFAI Journal of Managerial Economics, 2, pp. 7-24
- Yoshino, Naoyuki and Victor Pontines (2015) "The Highway Effect on Public Finance: Case of the STAR Highway in the Philippines", <u>Asian Development Bank Institute (ADBI) Working Paper No.549</u>.
- Yoshino, Naoyuki, Victor Pontines and Umid Abidhadjaev (2015) "Impact Evaluation of Infrastructure Provision on Public Finance and Economic Performance: Empirical Evidence from Philippines and Uzbekistan", <u>Asian</u> Development Bank Institute (ADBI), Working Paper, No.548.

